Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Test-trace-isolate programs are an essential part of coronavirus disease 2019 (COVID-19) control that offer a more targeted approach than many other nonpharmaceutical interventions. Effective use of such programs requires methods to estimate their current and anticipated impact.

Methods and findings

We present a mathematical modeling framework to evaluate the expected reductions in the reproductive number, R , from test-trace-isolate programs. This framework is implemented in a publicly available R package and an online application. We evaluated the effects of completeness in case detection and contact tracing and speed of isolation and quarantine using parameters consistent with COVID-19 transmission ( R 0 : 2.5, generation time: 6.5 days). We show that R is most sensitive to changes in the proportion of cases detected in almost all scenarios, and other metrics have a reduced impact when case detection levels are low (<30%). Although test-trace-isolate programs can contribute substantially to reducing R , exceptional performance across all metrics is needed to bring R below one through test-trace-isolate alone, highlighting the need for comprehensive control strategies. Results from this model also indicate that metrics used to evaluate performance of test-trace-isolate, such as the proportion of identified infections among traced contacts, may be misleading. While estimates of the impact of test-trace-isolate are sensitive to assumptions about COVID-19 natural history and adherence to isolation and quarantine, our qualitative findings are robust across numerous sensitivity analyses.

Conclusions

Effective test-trace-isolate programs first need to be strong in the “test” component, as case detection underlies all other program activities. Even moderately effective test-trace-isolate programs are an important tool for controlling the COVID-19 pandemic and can alleviate the need for more restrictive social distancing measures.

Article activity feed

  1. SciScore for 10.1101/2020.09.02.20186916: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Our framework is not without limitations. This model describes a general strategy of tracing and quarantining the immediate contacts of identified cases in a community. It may not be easily extensible to settings such as schools or workplaces. Alternative strategies also exist, including tracing of contacts-of-contacts [35], and so-called backwards tracing [36]. The latter approach is part of a fundamentally different way of using contact tracing in disease control that has been used in COVID-19 response in some countries (e.g., Japan [37]), which focuses on identifying settings that have the potential to facilitate super-spreading events or otherwise amplify transmission. Our estimates of program effectiveness are sensitive to assumptions of disease natural history, though we have explored the impact of some of these assumptions (Figures S4 - S8), and further exploration are possible. The model relies on a simplified version of transmission that does not account for many risk factors for SARS-CoV-2 infection or the contact structure in the population [35, 38], which could lead to persistent transmission even when the population reproductive number is low. While the reproductive number is a useful representation of transmission control at the population level, it does not capture differential health burden of infections, and a program could have a higher R but better limit mortality if it effectively protects at-risk populations. Test-trace-isolate programs should not alone b...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.