Cardiometabolic risk factors for COVID-19 susceptibility and severity: A Mendelian randomization analysis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Epidemiological studies report associations of diverse cardiometabolic conditions including obesity with COVID-19 illness, but causality has not been established. We sought to evaluate the associations of 17 cardiometabolic traits with COVID-19 susceptibility and severity using 2-sample Mendelian randomization (MR) analyses.

Methods and findings

We selected genetic variants associated with each exposure, including body mass index (BMI), at p < 5 × 10 −8 from genome-wide association studies (GWASs). We then calculated inverse-variance-weighted averages of variant-specific estimates using summary statistics for susceptibility and severity from the COVID-19 Host Genetics Initiative GWAS meta-analyses of population-based cohorts and hospital registries comprising individuals with self-reported or genetically inferred European ancestry. Susceptibility was defined as testing positive for COVID-19 and severity was defined as hospitalization with COVID-19 versus population controls (anyone not a case in contributing cohorts). We repeated the analysis for BMI with effect estimates from the UK Biobank and performed pairwise multivariable MR to estimate the direct effects and indirect effects of BMI through obesity-related cardiometabolic diseases. Using p < 0.05/34 tests = 0.0015 to declare statistical significance, we found a nonsignificant association of genetically higher BMI with testing positive for COVID-19 (14,134 COVID-19 cases/1,284,876 controls, p = 0.002; UK Biobank: odds ratio 1.06 [95% CI 1.02, 1.10] per kg/m 2 ; p = 0.004]) and a statistically significant association with higher risk of COVID-19 hospitalization (6,406 hospitalized COVID-19 cases/902,088 controls, p = 4.3 × 10 −5 ; UK Biobank: odds ratio 1.14 [95% CI 1.07, 1.21] per kg/m 2 , p = 2.1 × 10 −5 ). The implied direct effect of BMI was abolished upon conditioning on the effect on type 2 diabetes, coronary artery disease, stroke, and chronic kidney disease. No other cardiometabolic exposures tested were associated with a higher risk of poorer COVID-19 outcomes. Small study samples and weak genetic instruments could have limited the detection of modest associations, and pleiotropy may have biased effect estimates away from the null.

Conclusions

In this study, we found genetic evidence to support higher BMI as a causal risk factor for COVID-19 susceptibility and severity. These results raise the possibility that obesity could amplify COVID-19 disease burden independently or through its cardiometabolic consequences and suggest that targeting obesity may be a strategy to reduce the risk of severe COVID-19 outcomes.

Article activity feed

  1. SciScore for 10.1101/2020.08.26.20182709: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Our study had limitations. The variances explained in the exposures by genetic instruments were modest, though well within the ranges that were typical for complex traits. The use of weak genetic instruments could have limited our ability to detect subtle causal associations and does not exclude the possibility of modest effects. It is also possible that, with larger sample sizes, the association of other cardiometabolic exposures with COVID-19 outcomes may become significantly significant and confidence intervals would narrow around true estimates. Additionally, our analysis did not factor non-linear exposure-outcome relationships. The causal estimates by MR-Egger were not as compelling suggesting that horizontal pleiotropy or other confounding factors could have biased estimates. Yet, MR-Egger is a less efficient estimator than the other methods50 and is generally considered as only one of several sensitivity analyses used to evaluate the plausibility of findings. In our primary analyses we chose to use controls that were broadly defined as not being a case. Without universal testing, the control group, albeit representative of the general population, could have been contaminated with people who had contracted COVID-19, particularly those with only mild or no viral symptoms (asymptomatic), which would have biases estimates towards the null. Nevertheless, our results were consistent when using controls that were narrowly defined as people who tested negative for COVID-19. Ob...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.