Impact of school closures and reopening on COVID-19 caseload in 6 cities of Pakistan: An Interrupted Time Series Analysis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Schools were closed all over Pakistan on November 26, 2020 to reduce community transmission of COVID-19 and reopened between January 18 and February 1, 2021. However, these closures were associated with significant economic and social costs, prompting a review of effectiveness of school closures to reduce the spread of COVID-19 infections in a developing country like Pakistan. A single-group interrupted time series analysis (ITSA) was used to measure the impact of school closures, as well as reopening schools, on daily new COVID-19 cases in 6 major cities across Pakistan: Lahore, Karachi, Islamabad, Quetta, Peshawar, and Muzaffarabad. However, any benefits were contingent on continued closure of schools, as cases bounced back once schools reopened. School closures are associated with a clear and statistically significant reduction in COVID-19 cases by 0.07 to 0.63 cases per 100,000 population, while reopening schools is associated with a statistically significant increase. Lahore is an exception to the effect of school closures, but it too saw an increase in COVID-19 cases after schools reopened in early 2021. We show that closing schools was a viable policy option, especially before vaccines became available. However, its social and economic costs must also be considered.

Article activity feed

  1. SciScore for 10.1101/2022.05.25.22275590: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    RandomizationWe use a single-group ITSA because it is a quasi-experimental tool that is particularly useful when data cannot be fully randomized, there is no comparison group, and there is a need to consider the effect of only one intervention.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.