A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration

This article has been Reviewed by the following groups

Read the full article See related articles

Listed in

Log in to save this article

Abstract

The development of a functional cardiovascular system ensures a sustainable oxygen, nutrient and hormone delivery system for successful embryonic development and homeostasis in adulthood. While early vessels are formed by biochemical signaling and genetic programming, the onset of blood flow provides mechanical cues that participate in vascular remodeling of the embryonic vascular system. The zebrafish is a prolific animal model for studying the quantitative relationship between blood flow and vascular morphogenesis due to a combination of favorable factors including blood flow visualization in optically transparent larvae. In this study, we have developed a cell-and-plasma blood transport model using computational fluid dynamics (CFD) to understand how red blood cell (RBC) partitioning affect lumen wall shear stress (WSS) and blood pressure in zebrafish trunk blood vascular networks with altered rheology and morphology. By performing live imaging of embryos with reduced hematocrit, we discovered that cardiac output and caudal artery flow rates were maintained. These adaptation trends were recapitulated in our CFD models, which showed reduction in network WSS via viscosity reduction in the caudal artery/vein and via pressure gradient weakening in the intersegmental vessels (ISVs). Embryos with experimentally reduced lumen diameter showed reduced cardiac output and caudal artery flow rate. Factoring in this trend into our CFD models, simulations highlighted that lumen diameter reduction increased vessel WSS but this increase was mitigated by flow reduction due to the adaptive network pressure gradient weakening. Additionally, hypothetical network CFD models with different vessel lumen diameter distribution characteristics indicated the significance of axial variation in lumen diameter and cross-sectional shape for establishing physiological WSS gradients along ISVs. In summary, our work demonstrates how both experiment-driven and hypothetical CFD modeling can be employed for the study of blood flow physiology during vascular remodeling.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    Reviewer #1 (Evidence, reproducibility and clarity (Required)):

    The manuscript presents a detailed numerical model of blood flow in a region of the zebrafish vasculature.

    The results section is quite intense and detailed. it is difficult to understand what the authors are after. I think a rewrite would beneficial. The authors present simulations for a wild type and a couple of phenotypes. For each of these they speculate on the possible adaptation mechanism leading to the discussed phenotype, as preservation of constant wall shear stress. However, the comparison between experiments and numerical simulations is really elusive as the conclusions on those …

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    Summary: The authors report corroborating numerical-experimental studies on the relationship between morphological alterations (e.g. vessel lumen dilation/constriction, network mispatterning) and hemodynamical changes (e.g. variation in flow rate, pressure, wall shear stress) in the vascular network of zebrafish trunk circulation. Various physiological or pathological adaptation scenarios were proposed and tested, with a range of simulation and experiment models. Where I found it a solid piece of work supported by abundant data, certain aspects need to be clarified/enhanced to improve the scientific rigor and potential impact of the …

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    The manuscript presents a detailed numerical model of blood flow in a region of the zebrafish vasculature.

    The results section is quite intense and detailed. it is difficult to understand what the authors are after. I think a rewrite would beneficial. The authors present simulations for a wild type and a couple of phenotypes. For each of these they speculate on the possible adaptation mechanism leading to the discussed phenotype, as preservation of constant wall shear stress. However, the comparison between experiments and numerical simulations is really elusive as the conclusions on those mechanisms. Overall we suggest a rewrite …