An expert judgment model to predict early stages of the COVID-19 pandemic in the United States
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
From February to May 2020, experts in the modeling of infectious disease provided quantitative predictions and estimates of trends in the emerging COVID-19 pandemic in a series of 13 surveys. Data on existing transmission patterns were sparse when the pandemic began, but experts synthesized information available to them to provide quantitative, judgment-based assessments of the current and future state of the pandemic. We aggregated expert predictions into a single “linear pool” by taking an equally weighted average of their probabilistic statements. At a time when few computational models made public estimates or predictions about the pandemic, expert judgment provided (a) falsifiable predictions of short- and long-term pandemic outcomes related to reported COVID-19 cases, hospitalizations, and deaths, (b) estimates of latent viral transmission, and (c) counterfactual assessments of pandemic trajectories under different scenarios. The linear pool approach of aggregating expert predictions provided more consistently accurate predictions than any individual expert, although the predictive accuracy of a linear pool rarely provided the most accurate prediction. This work highlights the importance that an expert linear pool could play in flexibly assessing a wide array of risks early in future emerging outbreaks, especially in settings where available data cannot yet support data-driven computational modeling.
Article activity feed
-
-
SciScore for 10.1101/2020.09.21.20196725: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this …
SciScore for 10.1101/2020.09.21.20196725: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- No funding statement was detected.
- No protocol registration statement was detected.
-