Monitoring real-time transmission heterogeneity from incidence data

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The transmission heterogeneity of an epidemic is associated with a complex mixture of host, pathogen and environmental factors. And it may indicate superspreading events to reduce the efficiency of population-level control measures and to sustain the epidemic over a larger scale and a longer duration. Methods have been proposed to identify significant transmission heterogeneity in historic epidemics based on several data sources, such as contact history, viral genomes and spatial information, which may not be available, and more importantly ignore the temporal trend of transmission heterogeneity. Here we attempted to establish a convenient method to estimate real-time heterogeneity over an epidemic. Within the branching process framework, we introduced an instant-individualheterogenous infectiousness model to jointly characterize the variation in infectiousness both between individuals and among different times. With this model, we could simultaneously estimate the transmission heterogeneity and the reproduction number from incidence time series. We validated the model with data of both simulated and real outbreaks. Our estimates of the overall and real-time heterogeneities of the six epidemics were consistent with those presented in the literature. Additionally, our model is robust to the ubiquitous bias of under-reporting and misspecification of serial interval. By analyzing recent data from South Africa, we found evidence that the Omicron might be of more significant transmission heterogeneity than Delta. Our model based on incidence data was proved to be reliable in estimating the real-time transmission heterogeneity.

Article activity feed

  1. SciScore for 10.1101/2022.04.07.22273591: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The inference algorithm was implemented via the open-sourced python package of pymc3 [35].
    python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.