Microsimulation based quantitative analysis of COVID-19 management strategies
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Pandemic management requires reliable and efficient dynamical simulation to predict and control disease spreading. The COVID-19 (SARS-CoV-2) pandemic is mitigated by several non-pharmaceutical interventions, but it is hard to predict which of these are the most effective for a given population. We developed the computationally effective and scalable, agent-based microsimulation framework PanSim , allowing us to test control measures in multiple infection waves caused by the spread of a new virus variant in a city-sized societal environment using a unified framework fitted to realistic data. We show that vaccination strategies prioritising occupational risk groups minimise the number of infections but allow higher mortality while prioritising vulnerable groups minimises mortality but implies an increased infection rate. We also found that intensive vaccination along with non-pharmaceutical interventions can substantially suppress the spread of the virus, while low levels of vaccination, premature reopening may easily revert the epidemic to an uncontrolled state. Our analysis highlights that while vaccination protects the elderly from COVID-19, a large percentage of children will contract the virus, and we also show the benefits and limitations of various quarantine and testing scenarios. The uniquely detailed spatio-temporal resolution of PanSim allows the design and testing of complex, specifically targeted interventions with a large number of agents under dynamically changing conditions.
Article activity feed
-
-
SciScore for 10.1101/2021.06.20.21259214: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, …
SciScore for 10.1101/2021.06.20.21259214: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-