Optimal timing of one-shot interventions for epidemic control
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The interventions and outcomes in the ongoing COVID-19 pandemic are highly varied. The disease and the interventions both impose costs and harm on society. Some interventions with particularly high costs may only be implemented briefly. The design of optimal policy requires consideration of many intervention scenarios. In this paper we investigate the optimal timing of interventions that are not sustainable for a long period. Specifically, we look at at the impact of a single short-term non-repeated intervention (a “one-shot intervention”) on an epidemic and consider the impact of the intervention’s timing. To minimize the total number infected, the intervention should start close to the peak so that there is minimal rebound once the intervention is stopped. To minimise the peak prevalence, it should start earlier, leading to initial reduction and then having a rebound to the same prevalence as the pre-intervention peak rather than one very large peak. To delay infections as much as possible (as might be appropriate if we expect improved interventions or treatments to be developed), earlier interventions have clear benefit. In populations with distinct subgroups, synchronized interventions are less effective than targeting the interventions in each subcommunity separately.
Article activity feed
-
-
SciScore for 10.1101/2020.03.02.20030007: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:4.1 Limitations: Our results are somewhat limited by the assumptions we have made to produce a tractable problem. We assume that behavior responds immediately to changes in interventions. In reality, behavior may change prior to an intervention being implemented. Additionally adherence may drop as the intervention continues, and some …
SciScore for 10.1101/2020.03.02.20030007: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:4.1 Limitations: Our results are somewhat limited by the assumptions we have made to produce a tractable problem. We assume that behavior responds immediately to changes in interventions. In reality, behavior may change prior to an intervention being implemented. Additionally adherence may drop as the intervention continues, and some adherence to the intervention may remain even once the intervention is removed. The assumption that the individuals are largely homogeneous may lead to pessimistic predictions of when the herd immunity threshold is reached. In the presence of significant population heterogeneity, there is evidence suggesting that the herd immunity threshold would be reached earlier, and the epidemic could proceed significantly faster [16, 7]. Our qualitative predictions remain robust, but the timings would need to move sooner. We must think critically about what constitutes a one-shot intervention. Whether an intervention can be maintained may depend on context. Early estimates of case fatality rate (not to be confused with infection fatality rate) of COVID-19 ranged from 0.7% in China outside of Hubei province to around 2% in much of the world, to around 5.8% in Wuhan [35]. These estimates were affected by the proportion of cases identified (leading to uncertainty in the denominator), and whether the health system was over capacity (which would increase the death rate leading to uncertainty in the numerator). True infection fatality rates appear to lie between 0...
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
