MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Objective
This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized treatment.
Methods
We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, calibration plots, and decision curve analysis (DCA).
Results
Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792–0.874) in the training set and 0.789 (95% CI: 0.679–0.899) in the validation set. The nomogram derived from Model 5 effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in the training set, and 0.812, 0.940, and 0.944 in the validation set.
Conclusions
The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, supporting its application in personalized patient management.