Multiomics analysis reveals that chlorogenic acid alleviates heat stress-induced oxidative damage in prepubertal boar testes via the BLVRA-GPX3 pathway: in vivo and in vitro evidence

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Heat stress (HS) can impair boar testicular function, leading to reproductive issues. However, chlorogenic acid (CGA) has been shown to mitigate HS-induced damage in various livestock and poultry species. Prepuberty is an important stage of testicular development in boars after birth. However, the protective effect of CGA on testicular HS injury during prepuberty boars and the underlying mechanisms are still not fully understood.

Results

In vivo, a total of 30 healthy boars with similar body weights and ages were obtained and randomly divided into 3 groups, which were fed a basal diet supplemented with CGA 0 (the ND_TN group), 0 (the ND_HS group) or 1,000 (the CGA_HS group) mg/kg. After being fed for 28 d, all the groups, except the ND_TN group, were treated with high temperature for 7 d, after which samples were collected from the boars and analysed. The results showed that CGA significantly mitigated the HS-induced reduction in T-AOC content in testicular tissue and sperm density. Mechanistically, multiomics analysis revealed that the genes differentially expressed by CGA and HS were predominantly associated with the glutathione metabolism pathway. The combined analysis of transcriptomics and proteomics revealed that only BLVRA was affected by both HS and CGA when the mRNA and protein levels of a gene showed differential expression with the same trend. In vitro studies confirmed that CGA modulated GPX3 expression via BLVRA , affected GPx activity, and attenuated HS-induced ROS accumulation.

Conclusions

In conclusion, prepubertal HS impairs the spermatogenic capacity of boars. BLVRA may mediate the testicular protective effect of CGA, although in vivo validation of this pathway is needed. This study contributes to elucidating the mechanisms underlying the effects of HS on prepubertal boar testicular development using multiomics approaches, laying a foundation for the potential utilization of CGA in swine production.

Article activity feed