Projected geographic disparities in healthcare worker absenteeism from COVID-19 school closures and the economic feasibility of child care subsidies: a simulation study

This article has been Reviewed by the following groups

Read the full article

Abstract

Background

School closures have been enacted as a measure of mitigation during the ongoing coronavirus disease 2019 (COVID-19) pandemic. It has been shown that school closures could cause absenteeism among healthcare workers with dependent children, but there remains a need for spatially granular analyses of the relationship between school closures and healthcare worker absenteeism to inform local community preparedness.

Methods

We provide national- and county-level simulations of school closures and unmet child care needs across the USA. We develop individual simulations using county-level demographic and occupational data, and model school closure effectiveness with age-structured compartmental models. We perform multivariate quasi-Poisson ecological regressions to find associations between unmet child care needs and COVID-19 vulnerability factors.

Results

At the national level, we estimate the projected rate of unmet child care needs for healthcare worker households to range from 7.4 to 8.7%, and the effectiveness of school closures as a 7.6% and 8.4% reduction in fewer hospital and intensive care unit (ICU) beds, respectively, at peak demand when varying across initial reproduction number estimates by state. At the county level, we find substantial variations of projected unmet child care needs and school closure effects, 9.5% (interquartile range (IQR) 8.2–10.9%) of healthcare worker households and 5.2% (IQR 4.1–6.5%) and 6.8% (IQR 4.8–8.8%) reduction in fewer hospital and ICU beds, respectively, at peak demand. We find significant positive associations between estimated levels of unmet child care needs and diabetes prevalence, county rurality, and race ( p <0.05). We estimate costs of absenteeism and child care and observe from our models that an estimated 76.3 to 96.8% of counties would find it less expensive to provide child care to all healthcare workers with children than to bear the costs of healthcare worker absenteeism during school closures.

Conclusions

School closures are projected to reduce peak ICU and hospital demand, but could disrupt healthcare systems through absenteeism, especially in counties that are already particularly vulnerable to COVID-19. Child care subsidies could help circumvent the ostensible trade-off between school closures and healthcare worker absenteeism.

Article activity feed

  1. SciScore for 10.1101/2020.03.19.20039404: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    As a simulation study, there are important limitations to our analysis. Simulations rely on assumptions to make predictions, and ours use assumptions derived from available data. For example, we do not know the number of healthcare workers with dependents - we estimate this based on representative data that could be inaccurate for some regions. Similarly, there are no datasets that tell us how many healthcare workers would be unable to find child care in the event of school closures - we instead estimate this using representative microdata. Lack of available data prohibits us from making precise estimates for counties with small populations. Given the current uncertainty of transmission parameters, our transmission models should not be used to accurately predict infection and hospitalization rates, but rather to estimate the relative effectiveness of school closures based on the age-demographics of each county. Although our economic analysis demonstrates the affordability of a child care subsidy, our method does not prove that child care subsidies would necessarily reduce absenteeism resulting from school closures. We emphasize that our work does not argue for or against school closures due to currently unclear fatality and transmission data, but rather that we highlight areas that would suffer more in the event of school closure and could therefore benefit more from child care subsidies. Further research should investigate whether child care subsidies for healthcare workers ...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.