Predicting intention to receive COVID-19 vaccine among the general population using the health belief model and the theory of planned behavior model

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

This study aim to explore the intentions, motivators and barriers of the general public to vaccinate against COVID-19, using both the Health Belief Model (HBM) and the Theory of Planned Behavior (TPB) model.

Methods

An online survey was conducted among Israeli adults aged 18 years and older from May 24 to June 24, 2020. The survey included socio-demographic and health-related questions, questions related to HBM and TPB dimensions, and intention to receive a COVID-19 vaccine. Associations between questionnaire variables and COVID-19 vaccination intention were assessed by univariate and multivariate analyses.

Results

Eighty percent of 398 eligible respondents stated their willingness to receive COVID-19 vaccine. A unified model including HBM and TPB predictor variables as well as demographic and health-related factors, proved to be a powerful predictor of intention to receive COVID-19 vaccine, explaining 78% of the variance (adjusted R squared = 0.78). Men (OR = 4.35, 95% CI 1.58–11.93), educated respondents (OR = 3.54, 95% CI 1.44–8.67) and respondents who had received the seasonal influenza vaccine in the previous year (OR = 3.31, 95% CI 1.22–9.00) stated higher intention to receive COVID-19 vaccine. Participants were more likely to be willing to get vaccinated if they reported higher levels of perceived benefits of COVID-19 vaccine (OR = 4.49, 95% CI 2.79–7.22), of perceived severity of COVID-19 infection (OR = 2.36, 95% CI 1.58–3.51) and of cues to action (OR = 1.99, 95% CI 1.38–2.87), according to HBM, and if they reported higher levels of subjective norms (OR = 3.04, 95% CI 2.15–4.30) and self-efficacy (OR = 2.05, 95% CI 1.54–2.72) according to TPB. Although half of the respondents reported they had not received influenza vaccine last year, 40% of them intended to receive influenza vaccine in the coming winter and 66% of them intended to receive COVID-19 vaccine.

Conclusions

Providing data on the public perspective and predicting intention for COVID-19 vaccination using HBM and TPB is important for health policy makers and healthcare providers and can help better guide compliance as the COVID-19 vaccine becomes available to the public.

Article activity feed

  1. SciScore for 10.1101/2020.12.20.20248587: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.