Effects of medical resource capacities and intensities of public mitigation measures on outcomes of COVID-19 outbreaks

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

The COVID-19 pandemic is complex and is developing in different ways according to the country involved.

Methods

To identify the key parameters or processes that have the greatest effects on the pandemic and reveal the different progressions of epidemics in different countries, we quantified enhanced control measures and the dynamics of the production and provision of medical resources. We then nested these within a COVID-19 epidemic transmission model, which is parameterized by multi-source data. We obtained rate functions related to the intensity of mitigation measures, the effective reproduction numbers and the timings and durations of runs on medical resources, given differing control measures implemented in various countries.

Results

Increased detection rates may induce runs on medical resources and prolong their durations, depending on resource availability. Nevertheless, improving the detection rate can effectively and rapidly reduce the mortality rate, even after runs on medical resources. Combinations of multiple prevention and control strategies and timely improvement of abilities to supplement medical resources are key to effective control of the COVID-19 epidemic. A 50% reduction in comprehensive control measures would have led to the cumulative numbers of confirmed cases and deaths exceeding 590,000 and 60,000, respectively, by 27 March 2020 in mainland China.

Conclusions

Multiple data sources and cross validation of a COVID-19 epidemic model, coupled with a medical resource logistic model, revealed the key factors that affect epidemic progressions and their outbreak patterns in different countries. These key factors are the type of emergency medical response to avoid runs on medical resources, especially improved detection rates, the ability to promote public health measures, and the synergistic effects of combinations of multiple prevention and control strategies. The proposed model can assist health authorities to predict when they will be most in need of hospital beds and equipment such as ventilators, personal protection equipment, drugs, and staff.

Article activity feed

  1. SciScore for 10.1101/2020.04.17.20070318: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.