Effectiveness of the BNT162b2 (Pfizer-BioNTech) and the ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines for reducing susceptibility to infection with the Delta variant (B.1.617.2) of SARS-CoV-2
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Background
From January to May 2021 the alpha variant (B.1.1.7) of SARS-CoV-2 was the most commonly detected variant in the UK. Following this, the Delta variant (B.1.617.2) then became the predominant variant. The UK COVID-19 vaccination programme started on 8th December 2020. Prior to the Delta variant, most vaccine effectiveness studies focused on the alpha variant. We therefore aimed to estimate the effectiveness of the BNT162b2 (Pfizer-BioNTech) and the ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines in preventing symptomatic and asymptomatic infection with respect to the Delta variant in a UK setting.
Methods
We used anonymised public health record data linked to infection data (PCR) using the Combined Intelligence for Population Health Action resource. We then constructed an SIR epidemic model to explain SARS-CoV-2 infection data across the Cheshire and Merseyside region of the UK. Vaccines were assumed to be effective after 21 days for 1 dose and 14 days for 2 doses.
Results
We determined that the effectiveness of the Oxford-AstraZeneca vaccine in reducing susceptibility to infection is 39% (95% credible interval [34, 43]) and 64% (95% credible interval [61, 67]) for a single dose and a double dose respectively. For the Pfizer-BioNTech vaccine, the effectiveness is 20% (95% credible interval [10, 28]) and 84% (95% credible interval [82, 86]) for a single-dose and a double dose respectively.
Conclusion
Vaccine effectiveness for reducing susceptibility to SARS-CoV-2 infection shows noticeable improvement after receiving two doses of either vaccine. Findings also suggest that a full course of the Pfizer-BioNTech provides the optimal protection against infection with the Delta variant. This reinforces the need to complete the full course programme to maximise individual protection and reduce transmission.
Article activity feed
-
-
SciScore for 10.1101/2021.10.12.21264840: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources Markov Chain Monte Carlo (MCMC) methods were used to fit to the incidence and vaccination time series data using the R-statistical package BayesianTools [21]. BayesianToolssuggested: NoneResults from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:4.1 Limitations: It is important to note that our model does not stratify the population by age and therefore it does not take into account the effects of age on vaccine effectiveness. In the UK, vaccines were initially prioritised for the most …
SciScore for 10.1101/2021.10.12.21264840: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources Markov Chain Monte Carlo (MCMC) methods were used to fit to the incidence and vaccination time series data using the R-statistical package BayesianTools [21]. BayesianToolssuggested: NoneResults from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:4.1 Limitations: It is important to note that our model does not stratify the population by age and therefore it does not take into account the effects of age on vaccine effectiveness. In the UK, vaccines were initially prioritised for the most vulnerable people and then distributed in decreasing order of age [31]. In the fitting window we have used to estimate vaccine effectiveness, unvaccinated individuals or individuals with one dose are much younger. In particular, there is a greater distribution of one dose amongst those ≤ 50 years, and a greater distribution of 2 doses amongst those ≥ 70 years. This means that the single dose vaccine effectiveness is likely to be biased towards the younger population, whereas those with two doses towards the older population. There may be an effect due to variation in immunity across age groups, where younger individuals are likely to have a better immune response to vaccines. The effectiveness of a given vaccine would therefore also depend upon how it is distributed across different age groups. However, Cheshire and Merseyside has had slower population level COVID-19 vaccine uptake compared to other areas of the UK [1], which has benefits for estimating vaccine effectiveness in post-licensure studies as this has resulted in a more heterogeneous age distribution, particularly in the population which has only received one dose of the Pfizer-BioNTech vaccine.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-