Preventing a cluster from becoming a new wave in settings with zero community COVID-19 cases

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

In settings with zero community transmission, any new SARS-CoV-2 outbreaks are likely to be the result of random incursions. The level of restrictions in place at the time of the incursion is likely to considerably affect possible outbreak trajectories, but the probability that a large outbreak eventuates is not known.

Methods

We used an agent-based model to investigate the relationship between ongoing restrictions and behavioural factors, and the probability of an incursion causing an outbreak and the resulting growth rate. We applied our model to the state of Victoria, Australia, which has reached zero community transmission as of November 2020.

Results

We found that a future incursion has a 45% probability of causing an outbreak (defined as a 7-day average of > 5 new cases per day within 60 days) if no restrictions were in place, decreasing to 23% with a mandatory masks policy, density restrictions on venues such as restaurants, and if employees worked from home where possible. A drop in community symptomatic testing rates was associated with up to a 10-percentage point increase in outbreak probability, highlighting the importance of maintaining high testing rates as part of a suppression strategy.

Conclusions

Because the chance of an incursion occurring is closely related to border controls, outbreak risk management strategies require an integrated approaching spanning border controls, ongoing restrictions, and plans for response. Each individual restriction or control strategy reduces the risk of an outbreak. They can be traded off against each other, but if too many are removed there is a danger of accumulating an unsafe level of risk. The outbreak probabilities estimated in this study are of particular relevance in assessing the downstream risks associated with increased international travel.

Article activity feed

  1. SciScore for 10.1101/2020.12.21.20248595: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.