The prediction for development of COVID-19 in global major epidemic areas through empirical trends in China by utilizing state transition matrix model

This article has been Reviewed by the following groups

Read the full article

Abstract

Background

Since pneumonia caused by coronavirus disease 2019 (COVID-19) broke out in Wuhan, Hubei province, China, tremendous infected cases has risen all over the world attributed to its high transmissibility. We aimed to mathematically forecast the inflection point (IFP) of new cases in South Korea, Italy, and Iran, utilizing the transcendental model from China.

Methods

Data from reports released by the National Health Commission of the People’s Republic of China (Dec 31, 2019 to Mar 5, 2020) and the World Health Organization (Jan 20, 2020 to Mar 5, 2020) were extracted as the training set and the data from Mar 6 to 9 as the validation set. New close contacts, newly confirmed cases, cumulative confirmed cases, non-severe cases, severe cases, critical cases, cured cases, and death were collected and analyzed. We analyzed the data above through the State Transition Matrix model.

Results

The optimistic scenario (non-Hubei model, daily increment rate of − 3.87%), the cautiously optimistic scenario (Hubei model, daily increment rate of − 2.20%), and the relatively pessimistic scenario (adjustment, daily increment rate of − 1.50%) were inferred and modeling from data in China. The IFP of time in South Korea would be Mar 6 to 12, Italy Mar 10 to 24, and Iran Mar 10 to 24. The numbers of cumulative confirmed patients will reach approximately 20 k in South Korea, 209 k in Italy, and 226 k in Iran under fitting scenarios, respectively. However, with the adoption of different diagnosis criteria, the variation of new cases could impose various influences in the predictive model. If that happens, the IFP of increment will be earlier than predicted above.

Conclusion

The end of the pandemic is still inapproachable, and the number of confirmed cases is still escalating. With the augment of data, the world epidemic trend could be further predicted, and it is imperative to consummate the assignment of global medical resources to curb the development of COVID-19.

Article activity feed

  1. SciScore for 10.1101/2020.03.10.20033670: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All data were analyzed using Microsoft Excel (Microsoft Office 2016) and R studio (R Foundation for Statistical Computing, Vienna, Austria).
    Microsoft Excel
    suggested: (Microsoft Excel, RRID:SCR_016137)
    Histogram was obtained using the ggplot2 packages of R. State Transition Matrix Model: State transition matrix (STM) modeling is a well-regarded approach widely applied in clinical decision analysis based on computer simulation.
    ggplot2
    suggested: (ggplot2, RRID:SCR_014601)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Through the STM Model, based on data from Hubei and non-Hubei, we predict the IFPs in Korea, Italy, and Iran, while there are still some limitations. Due to the large outbreaks started at different times all over the world, the effects of seasonal and geographical factors have not been taken into account. Although the fitting with the Chinese model can better predict the situation around the world, through reference and learning, the response strategies of other countries may be more mature. As China resumes work, the production capacity of various medical resources will gear up rapidly, which will impose a positive impact on the world, and it could be more optimistic that the IFP will come soon. Local governments, regardless of the speed of outbreaks, should learn from China’s primary response strategy, such as stopping working, reducing gathering, preventing contact transmission, wearing masks, and implementing quarantine. After the NCP being under control, the production and output of medical resources should be intensified, the production of coronavirus detection kits should be accelerated, existing cases should be summarized. More accurate diagnostic criteria should be compiled to prevent massive missed diagnoses in countries lacking the kit. Even if it currently causes some global economic regression, the recovery will swiftly come after holding the throat of NCP and COVID-19.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.