Response of different cotton genotypes to salt stress and re-watering
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background
Cotton is a vital economic crop and reserve material and a pioneer crop planted on saline-alkaline soil. Improving the tolerance of cotton to saline alkaline environments is particularly important.
Results
Salt-tolerant and salt-sensitive cotton plants at the three-leaf stage were subjected to 200 mM NaCl stress treatment, thereafter, microstructural observations beside physiological and biochemical analyses were performed on cotton leaves at 0 h (CK), 48 h (NaCl) and re-watering (RW) for 48 h. Salt stress altered microstructural observations and physiological and biochemical in ST and SS ( p < 0.05). After re-watering, ST recovered fully, while SS sustained permanent oxidative and structural damage, indicating distinct salt tolerance. Transcriptome analysis was performed on cotton leaves under salt stress and re-watering conditions. KEGG analysis revealed that the response of cotton to salt stress and its adaptation to re-watering may be related to major protein families such as photosynthesis (ko 00195), photosynthesis-antenna protein (ko 00196), plant hormone signal transduction (ko 04075), starch and sucrose metabolism (ko 00500), and porphyrin and chlorophyll metabolism (ko 00860). A gray coexpression module associated with cotton restoration under salt stress was enriched according to WGCNA.
Conclusions
Salt stress did not only affect the physiological and biochemical levels of cotton but also induced structural changes in cells and tissues. Re-watering was relatively effective in stabilizing the physiological and biochemical parameters, as well as the leaf microstructure, of cotton plants under salt stress. WGCNA revealed enriched gray coexpression modules related to the recovery of cotton plants under salt stress, and screening of the pivotal genes in the gray module revealed five critical hubs, namely, GH_A01G1528 , GH_A08G2688 , GH_D08G2683 , GH_D01G1620 and GH_A10G0617 . Overall, our findings can provide new insights into enhancing cotton salt tolerance and exploring salt tolerance genes in cotton,including screening cotton genetic resources using those potential responsive genes. This study provides a theoretical basis for further exploration of the molecular mechanism of cotton salt tolerance and genetic resources for breeding salt-tolerant cotton.