A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19)
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
Background
The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact on the world's population. A key aspect to providing care for those with COVID-19 and checking its further spread is early and accurate diagnosis of infection, which has been generally done via methods for amplifying and detecting viral RNA molecules. Detection and quantitation of peptides using targeted mass spectrometry-based strategies has been proposed as an alternative diagnostic tool due to direct detection of molecular indicators from non-invasively collected samples as well as the potential for high-throughput analysis in a clinical setting; many studies have revealed the presence of viral peptides within easily accessed patient samples. However, evidence suggests that some viral peptides could serve as better indicators of COVID-19 infection status than others, due to potential misidentification of peptides derived from human host proteins, poor spectral quality, high limits of detection etc.
Methods
In this study we have compiled a list of 636 peptides identified from Sudden Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples, including from in vitro and clinical sources. These datasets were rigorously analyzed using automated, Galaxy-based workflows containing tools such as PepQuery, BLAST-P, and the Multi-omic Visualization Platform as well as the open-source tools MetaTryp and Proteomics Data Viewer (PDV).
Results
Using PepQuery for confirming peptide spectrum matches, we were able to narrow down the 639-peptide possibilities to 87 peptides that were most robustly detected and specific to the SARS-CoV-2 virus. The specificity of these sequences to coronavirus taxa was confirmed using Unipept and BLAST-P. Through stringent p-value cutoff combined with manual verification of peptide spectrum match quality, 4 peptides derived from the nucleocapsid phosphoprotein and membrane protein were found to be most robustly detected across all cell culture and clinical samples, including those collected non-invasively.
Conclusion
We propose that these peptides would be of the most value for clinical proteomics applications seeking to detect COVID-19 from patient samples. We also contend that samples harvested from the upper respiratory tract and oral cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected patient samples using mass spectrometry-based proteomics assays.
Article activity feed
-
-
SciScore for 10.1101/2021.02.09.21251427: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Cell Line Authentication not detected. Table 2: Resources
Experimental Models: Cell Lines Sentences Resources Case Study: For establishing workflows to evaluate virus-specific peptides, three published cell culture datasets22-24 which used SARS-CoV-2 infected Vero cell lines were chosen, along with five clinical datasets25-29. Verosuggested: NoneThe second dataset was published by Grenga et al. (PXD018594) wherein a seven-day time course shotgun proteomics study was performed on Vero E6 cells infected by Italy-INMI1 SARS-CoV-2 virus at two … SciScore for 10.1101/2021.02.09.21251427: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Cell Line Authentication not detected. Table 2: Resources
Experimental Models: Cell Lines Sentences Resources Case Study: For establishing workflows to evaluate virus-specific peptides, three published cell culture datasets22-24 which used SARS-CoV-2 infected Vero cell lines were chosen, along with five clinical datasets25-29. Verosuggested: NoneThe second dataset was published by Grenga et al. (PXD018594) wherein a seven-day time course shotgun proteomics study was performed on Vero E6 cells infected by Italy-INMI1 SARS-CoV-2 virus at two multiplicities of infection. Vero E6suggested: RRID:CVCL_XD71)Software and Algorithms Sentences Resources The peptide report generated using PeptideShaker was used to extract confident COVID-19 peptides. PeptideShakersuggested: (PeptideShaker, RRID:SCR_002520)Further offline analysis (non-Galaxy based) was performed using NCBI BLAST-P analysis as well as the MetaTryp33 coronavirus database. NCBI BLAST-Psuggested: NoneMetaTryp33suggested: NoneResults from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
