Projecting the Combined Health Care Burden of Seasonal Influenza and COVID-19 in the 2020–2021 Season

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background. In mid-2020, there was significant concern that the overlapping 2020–2021 influenza season and COVID-19 pandemic would overwhelm already stressed health care systems in the Northern Hemisphere, particularly if influenza immunization rates were low. Methods. Using a mathematical susceptible-exposed-infected-recovered (SEIR) compartmental model incorporating the age-specific viral transmission rates and disease severity of Austin, Texas, a large metropolitan region, we projected the incidence and health care burden for both COVID-19 and influenza across observed levels of SARS-CoV-2 transmission and influenza immunization rates for the 2020–2021 season. We then retrospectively compared scenario projections made in August 2020 with observed trends through June 2021. Results. Across all scenarios, we projected that the COVID-19 burden would dwarf that of influenza. In all but our lowest transmission scenarios, intensive care units were overwhelmed by COVID-19 patients, with the levels of influenza immunization having little impact on health care capacity needs. Consistent with our projections, sustained nonpharmaceutical interventions (NPIs) in Austin prevented COVID-19 from overwhelming health care systems and almost completely suppressed influenza during the 2020–2021 respiratory virus season. Limitations. The model assumed no cross-immunity between SARS-CoV-2 and influenza, which might reduce the burden or slow the transmission of 1 or both viruses. Conclusion. Before the widespread rollout of the SARS-CoV-2 vaccine, COVID-19 was projected to cause an order of magnitude more hospitalizations than seasonal influenza because of its higher transmissibility and severity. Consistent with predictions assuming strong NPIs, COVID-19 strained but did not overwhelm local health care systems in Austin, while the influenza burden was negligible. Implications. Nonspecific NPI efforts can dramatically reduce seasonal influenza burden and preserve health care capacity during respiratory virus season.

As the COVID-19 pandemic threatened lives worldwide, the Northern Hemisphere braced for a potential “twindemic” of seasonal influenza and COVID-19. Using a validated mathematical model of influenza and SARS-CoV-2 co-circulation in a large US city, we projected the impact of COVID-19–driven nonpharmaceutical interventions combined with influenza vaccination on health care capacity during the 2020–2021 respiratory virus season. We describe analyses conducted during summer 2020 to help US cities prepare for the 2020–2021 influenza season and provide a retrospective evaluation of the initial projections.

Article activity feed

  1. SciScore for 10.1101/2020.12.20.20248599: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.