Temporal Patterns in the Evolutionary Genetic Distance of SARS-CoV-2 during the COVID-19 Pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

During coronavirus disease 2019 (COVID-19) pandemic, the genetic mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred frequently. Some mutations in the spike protein are considered to promote transmissibility of the virus, while the mutation patterns in other proteins are less studied and may also be important in understanding the characteristics of SARS-CoV-2. We used the sequencing data of SARS-CoV-2 strains in California to investigate the time-varying patterns of the evolutionary genetic distance. The accumulative genetic distances were quantified across different time periods and in different viral proteins. The increasing trends of genetic distance were observed in spike protein (S protein), the RNA-dependent RNA polymerase (RdRp) region and nonstructural protein 3 (nsp3) of open reading frame 1 (ORF1), and nucleocapsid protein (N protein). The genetic distances in ORF3a, ORF8, and nsp2 of ORF1 started to diverge from their original variants after September 2020. By contrast, mutations in other proteins appeared transiently, and no evident increasing trend was observed in the genetic distance to the original variants. This study presents distinct patterns of the SARS-CoV-2 mutations across multiple proteins from the aspect of genetic distance. Future investigation shall be conducted to study the effects of accumulative mutations on epidemics characteristics.

Article activity feed

  1. SciScore for 10.1101/2020.11.01.363739: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    RandomizationWe used a stratified sampling scheme to randomly selected sequences in biweekly time interval.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Multiple sequences alignment was performed using MEGA-X (version 10.1.8).
    MEGA-X
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.