Radiological Findings in SARS-CoV-2 Viral Pneumonia Compared to Other Viral Pneumonias: A Single-Centre Study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background. Thorax computed tomography (CT) imaging is widely used as a diagnostic method in the diagnosis of coronavirus disease 2019 (COVID-19)-related pneumonia. Radiological differential diagnosis and isolation of other viral agents causing pneumonia in patients have gained importance, particularly during the pandemic. Aims. We aimed to investigate whether there is a difference between CT images from patients with COVID-19-associated pneumonia compared to CT images of patients with pneumonia due to other viral agents and which finding may be more effective in diagnosis. Study Design. The study included 249 adult patients with pneumonia identified by thorax CT examination and with a positive COVID-19 RT-PCR test compared to 94 patients diagnosed with non-COVID-19 pneumonia (viral PCR positive but no bacterial or fungal agents detected in other cultures) between 2015 and 2019. CT images were retrospectively analyzed using the PACS system. CT findings were evaluated by two radiologists with 5 and 20 years of experience, in a blinded fashion, and the outcome was decided by consensus. Methods. Demographic data (age, gender, and known chronic disease) and CT imaging findings (percentage of involvement, number of lesions, distribution preference, dominant pattern, ground-glass opacity distribution pattern, nodule, tree in bud sign, interstitial changes, crazy paving sign, reversed halo sign, vacuolar sign, halo sign, vascular enlargement, linear opacities, traction bronchiectasis, peribronchial wall thickness, air trapping, pleural retraction, pleural effusion, pericardial effusion, cavitation, mediastinal/hilar lymphadenopathy, dominant lesion size, consolidation, subpleural curvilinear opacities, air bronchogram, and pleural thickening) of the patients were evaluated. CT findings were also evaluated with the RSNA consensus guideline and the CORADS scoring system. Data were divided into two main groups—non-COVID-19 and COVID-19 pneumonia—and compared statistically with chi-squared tests and multiple regression analysis of independent variables. Results. RSNA and CORADS classifications of CT scan images were able to successfully differentiate between positive and negative COVID-19 pneumonia patients. Statistically significant differences were found between the two patient groups in various categories including the percentage of involvement, number of lesions, distribution preference, dominant pattern, nodule, tree in bud, interstitial changes, crazy paving, reverse halo vascular enlargement, peribronchial wall thickness, air trapping, pleural retraction, pleural/pericardial effusion, cavitation, and mediastinal/hilar lymphadenopathy ( p < 0.01 ). Multiple linear regression analysis of independent variables found a significant effect in reverse halo sign (β = 0.097, p < 0.05 ) and pleural effusion (β = 10.631, p < 0.05 ) on COVID-19 pneumonia patients. Conclusion. The presence of reverse halo and absence of pleural effusion was found to be characteristic of COVID-19 pneumonia and therefore a reliable diagnostic tool to differentiate it from non-COVID-19 pneumonia.

Article activity feed

  1. SciScore for 10.1101/2022.05.11.22274305: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.