Inequalities in the evolution of the COVID-19 pandemic: an ecological study of inequalities in mortality in the first wave and the effects of the first national lockdown in England

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

To examine how ecological inequalities in COVID-19 mortality rates evolved in England, and whether the first national lockdown impacted them. This analysis aimed to provide evidence for important lessons to inform public health planning to reduce inequalities in any future pandemics.

Design

Longitudinal ecological study.

Setting

307 lower-tier local authorities in England.

Primary outcome measure

Age-standardised COVID-19 mortality rates by local authority, regressed on Index of Multiple Deprivation (IMD) and relevant epidemic dynamics.

Results

Local authorities that started recording COVID-19 deaths earlier were more deprived, and more deprived authorities saw faster increases in their death rates. By 6 April 2020 (week 15, the earliest time that the 23 March lockdown could have begun affecting death rates) the cumulative death rate in local authorities in the two most deprived deciles of IMD was 54% higher than the rate in the two least deprived deciles. By 4 July 2020 (week 27), this gap had narrowed to 29%. Thus, inequalities in mortality rates by decile of deprivation persisted throughout the first wave, but reduced during the lockdown.

Conclusions

This study found significant differences in the dynamics of COVID-19 mortality at the local authority level, resulting in inequalities in cumulative mortality rates during the first wave of the pandemic. The first lockdown in England was fairly strict—and the study found that it particularly benefited those living in more deprived local authorities. Care should be taken to implement lockdowns early enough, in the right places—and at a sufficiently strict level—to maximally benefit all communities, and reduce inequalities.

Article activity feed

  1. SciScore for 10.1101/2021.10.23.21265415: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.