Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine–elicited human sera

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern Omicron (B.1.1.529) has a large number of mutations, especially in the spike protein, indicating that recognition by neutralizing antibodies may be compromised. We tested Wuhan (Wuhan-Hu-1 reference strain), Beta (B.1.351), Delta (B.1.617.2), or Omicron pseudoviruses with sera of 51 participants who received two or three doses of the messenger RNA (mRNA)–based COVID-19 vaccine BNT162b2. After two doses, Omicron-neutralizing titers were reduced >22-fold compared with Wuhan-neutralizing titers. One month after the third vaccine dose, Omicron-neutralizing titers were increased 23-fold relative to their levels after two doses and were similar to levels of Wuhan-neutralizing titers after two doses. The requirement of a third vaccine dose to effectively neutralize Omicron was confirmed with sera from a subset of participants using live SARS-CoV-2. These data suggest that three doses of the mRNA vaccine BNT162b2 may protect against Omicron-mediated COVID-19.

Article activity feed

  1. SciScore for 10.1101/2021.12.22.21268103: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Materials are available from the authors under a material transfer agreement with BioNTech.
    BioNTech
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: We found the following clinical trial numbers in your paper:

    IdentifierStatusTitle
    NCT04380701RecruitingA Trial Investigating the Safety and Effects of Four BNT162 …
    NCT04949490RecruitingA Trial Investigating the Safety and Effects of One or Two A…
    NCT05004181RecruitingSafety and Immunogenicity of a SARS CoV 2 Multivalent RNA Va…


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.