De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Abstract

Many efforts to develop therapies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the interaction between the spike protein, which decorates the surface of the virus, and its host receptor, human angiotensin-converting enzyme 2 (hACE2). Linsky et al. describe a de novo design strategy that allowed them to engineer decoy proteins that bind to the spike protein by replicating the hACE2 interface. The best decoy, CTC-445, bound with low nanomolar affinity, and selection of viral mutants that decrease binding is unlikely because this would also affect binding to hACE2. A bivalent version of CTC-445 bound even more tightly, neutralized SARS-CoV-2 infection of cells, and protected hamsters from a SARS-CoV-2 challenge. The stable decoy has the potential for respiratory therapeutic delivery.

Science , this issue p. 1208

Article activity feed

  1. SciScore for 10.1101/2020.08.03.231340: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.