Design of intrinsically disordered protein variants with diverse structural properties

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Intrinsically disordered proteins (IDPs) perform a broad range of functions in biology, suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel functions. Computational design of IDPs with specific conformational properties has, however, been difficult because of their substantial dynamics and structural complexity. We describe a general algorithm for designing IDPs with specific structural properties. We demonstrate the power of the algorithm by generating variants of naturally occurring IDPs that differ in compaction, long-range contacts, and propensity to phase separate. We experimentally tested and validated our designs and analyzed the sequence features that determine conformations. We show how our results are captured by a machine learning model, enabling us to speed up the algorithm. Our work expands the toolbox for computational protein design and will facilitate the design of proteins whose functions exploit the many properties afforded by protein disorder.

Article activity feed