A quantitative evaluation of aerosol generation during tracheal intubation and extubation

This article has been Reviewed by the following groups

Read the full article

Abstract

The potential aerosolised transmission of severe acute respiratory syndrome coronavirus‐2 is of global concern. Airborne precaution personal protective equipment and preventative measures are universally mandated for medical procedures deemed to be aerosol generating. The implementation of these measures is having a huge impact on healthcare provision. There is currently a lack of quantitative evidence on the number and size of airborne particles produced during aerosol‐generating procedures to inform risk assessments. To address this evidence gap, we conducted real‐time, high‐resolution environmental monitoring in ultraclean ventilation operating theatres during tracheal intubation and extubation sequences. Continuous sampling with an optical particle sizer allowed characterisation of aerosol generation within the zone between the patient and anaesthetist. Aerosol monitoring showed a very low background particle count (0.4 particles.l −1 ) allowing resolution of transient increases in airborne particles associated with airway management. As a positive reference control, we quantitated the aerosol produced in the same setting by a volitional cough (average concentration, 732 (418) particles.l −1 , n = 38). Tracheal intubation including facemask ventilation produced very low quantities of aerosolised particles (average concentration, 1.4 (1.4) particles.l −1 , n = 14, p < 0.0001 vs. cough). Tracheal extubation, particularly when the patient coughed, produced a detectable aerosol (21 (18) l −1 , n = 10) which was 15‐fold greater than intubation (p = 0.0004) but 35‐fold less than a volitional cough (p < 0.0001). The study does not support the designation of elective tracheal intubation as an aerosol‐generating procedure. Extubation generates more detectable aerosol than intubation but falls below the current criterion for designation as a high‐risk aerosol‐generating procedure. These novel findings from real‐time aerosol detection in a routine healthcare setting provide a quantitative methodology for risk assessment that can be extended to other airway management techniques and clinical settings. They also indicate the need for reappraisal of what constitutes an aerosol‐generating procedure and the associated precautions for routine anaesthetic airway management.

Article activity feed

  1. SciScore for 10.1101/2020.08.24.20180067: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementIRB: Ethical approval for the study was given by the Faculty of Life Science and Science Research Ethics Committee at University of Bristol (ref: 105203).
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Airway management events were recorded contemporaneously using a time stamp application (Emerald Sequoia LLC): Analysis: Data were exported from the TSI optical particle sizer, processed in the TSI Aerosol Instrument Manager software, and analysed in Origin Pro (Originlab) and Prism v8 (Graphpad).
    Graphpad
    suggested: (GraphPad, RRID:SCR_000306)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.