TACAN is an essential component of the mechanosensitive ion channel responsible for pain sensing

Read the full article

Abstract

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying several physiological functions such as touch and pain sensing, hearing and proprioception. This process is carried out by specialized mechanosensitive ion channels whose identities have been discovered for most functions except pain sensing. Here we report the identification of TACAN (Tmem120A), an essential subunit of the mechanosensitive ion channel responsible for sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically-evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, knocking down TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to mechanical but not to thermal pain stimuli, without affecting the sensitivity to touch stimuli. We propose that TACAN is a pore-forming subunit of the mechanosensitive ion channel responsible for sensing mechanical pain.

Article activity feed