Palaeobiological inferences based on long bone epiphyseal and diaphyseal structure - the forelimb of xenarthrans (Mammalia)

This article has been Reviewed by the following groups

Read the full article

Listed in

Log in to save this article

Abstract

Trabecular architecture (i.e., the main orientation of the bone trabeculae, their number, mean thickness, spacing, etc.) has been shown experimentally to adapt with great accuracy and sensitivity to the loadings applied to the bone during life. However, the potential of trabecular parameters used as a proxy for the mechanical environment of an organism’s organ to help reconstruct the lifestyle of extinct taxa has only recently started to be exploited. Furthermore, these parameters are rarely combined to the long-used mid-diaphyseal parameters to inform such reconstructions. Here we investigate xenarthrans, for which functional and ecological reconstructions of extinct forms are particularly important in order to improve our macroevolutionary understanding of their main constitutive clades, i.e., the Tardigrada (sloths), Vermilingua (anteaters), and Cingulata (armadillos and extinct close relatives). The lifestyles of modern xenarthrans can be classified as fully terrestrial and highly fossorial (armadillos), arboreal (partly to fully) and hook-and-pull digging (anteaters), or suspensory (fully arboreal) and non-fossorial (sloths). The degree of arboreality and fossoriality of some extinct forms, “ground sloths” in particular, is highly debated. We used high-resolution computed tomography to compare the epiphyseal 3D architecture and mid-diaphyseal structure of the forelimb bones of extant and extinct xenarthrans. The comparative approach employed aims at inferring the most probable lifestyle of extinct taxa, using phylogenetically informed discriminant analyses. Several challenges preventing the attribution of one of the extant xenarthran lifestyles to the sampled extinct sloths were identified. Differing from that of the larger “ground sloths”, the bone structure of the small-sized Hapalops (Miocene of Argentina), however, was found as significantly more similar to that of extant sloths, even when accounting for the phylogenetic signal.

Article activity feed