Training neural networks from scratch in a videogame leads to brittle brain encoding

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Recent brain-encoding studies using videogame tasks suggest that the training objective of an artificial neural network plays a central role in how well the network’s representations align with brain activity. This study investigates the alignment of artificial neural network activations with brain activity elicited by a video game task using models trained from scratch in controlled settings. We specifically compared three model training objectives: reinforcement learning, imitation learning, and a vision task, while accounting for other potential factors which may impact performance such as training data and model architecture. We tested models on brain encoding, i.e. their ability to predict functional magnetic resonance imaging (fMRI) signals acquired while human subjects played different levels of the video game Super Mario Bros. When tested on new playthroughs from the game levels seen at training, the reinforcement learning objective had a small but significant advantage in brain encoding, followed by the imitation learning and vision models. We hypothesized that brain-aligned representations would emerge only in task-competent models, and that the specific brain regions well encoded by a model would depend on the nature of the task it was trained on. While brain encoding did improve during model training, even an untrained model with matching architecture approached the performance of the best models. Contrary to our hypotheses, no model layers or specific training objectives aligned preferentially with specific brain areas. Large performance gaps also persisted in fully trained models across game levels, both those seen during training and entirely novel ones. Overall, even though reinforcement learning presented a small advantage to train brain encoding models for videogame data, all tested brain encoding models exhibited brittle performance with limited generalization both within- and out-of-distribution. Overall, our results suggest that training small artificial models from scratch is not sufficiently reliable, and that incorporating pretrained models such as foundation vision–action models may ultimately be necessary to support robust inferences about brain representations.

Article activity feed