scE2TM improves single-cell embedding interpretability and reveals cellular perturbation signatures

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Single-cell RNA sequencing technologies have revolutionized our understanding of cellular heterogeneity, yet computational methods often struggle to balance performance with biological interpretability. Embedded topic models have been widely used for interpretable single-cell embedding learning. However, these models suffer from the potential problem of interpretation collapse, where topics semantically collapse towards each other, resulting in redundant topics and incomplete capture of biological variation. Furthermore, the rise of single-cell foundation models creates opportunities to harness external biological knowledge for guiding model embeddings. Here, we present scE2TM, an external knowledge-guided embedded topic model that provides a high-quality cell embedding and interpretation for scRNA-seq analysis. Through embedding clustering regularization method, each topic is constrained to be the center of a separately aggregated gene cluster, enabling it to capture unique biological information. Across 20 scRNA-seq datasets, scE2TM achieves superior clustering performance compared with seven state-of-the-art methods. A comprehensive interpretability benchmark further shows that scE2TM-learned topics exhibit higher diversity and stronger consistency with underlying biological pathways. Modeling interferon-stimulated PBMCs, scE2TM simulates topic perturbations that drive control cells toward stimulated-like transcriptional states, faithfully mirroring experimental interferon responses. In melanoma, scE2TM identifies malignant-specific topics and extrapolates them to unseen patient data, revealing gene programs associated with patient survival.

Article activity feed