Cryo-FIB Lift-out and Electron Tomography Workflow for Bacteria-Nanopillar Interface Imaging Under Native Conditions: Investigating Dragonfly Inspired Bactericidal Titanium Surfaces
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Dragonfly and cicada wing-inspired titanium nanopillar surfaces show promising bactericidal properties for antibacterial medical implant applications, but the precise mechanisms of bacteria-nanopillar interactions under hydrated conditions remain unclear. Cryo-electron tomography (cryo-ET) enables the visualisation of cellular organelles within their native hydrated cellular environment at molecular resolution. Visualising the bacteria-material interface on nanostructured surfaces by cryo transmission electron microscopy (cryo-TEM) requires the preparation of thin lamellae. Obtaining lamellae of bacteria directly on metal substrates while in a non-fixed and hydrated state requires cryo-focused ion beam (cryo-FIB) milling to isolate the targeted bacteria from the bulk sample. This approach faces additional challenges compared to tissues or cells on TEM grids, as titanium samples require a simultaneous cross-section of soft and hard materials at the same position and require vitrification, which embeds the sample in a thick layer of ice. Nonetheless, we demonstrate how to target a specific bacterium interacting with a titanium nanopillar surface using correlative cryo-fluorescence imaging, and how lamellae can still be prepared from vitrified samples by extracting the targeted bacterium and its surrounding as a small volume and transferring it to a receptor grid for thin lamella preparation, called targeted cryo-lift-out. Here, we outline the workflows and discuss their advantages and limitations for producing lamellae through lift-out techniques under cryogenic conditions, using methods that do not involve gas injection systems (GIS) for the lift-out transfer. These advances enhance cryo-ET applications, enabling in situ investigations of the interface between bacteria and nanopillars to effectively study the bactericidal mechanisms of biomimetic nature-inspired nanotopographies in a hydrated environment.