Colorectal cancer relies on an immunosuppressive cellular topography and genomic adaptations for establishing brain metastases

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Colorectal cancer ( CRC ) brain metastases have a poor prognosis and limited treatment options, including resistance to radiation therapy. Little is known about the molecular and cellular mechanisms that enable CRC tumor cells to adapt to the brain and establish a supportive tumor microenvironment. To address this gap we used spatial transcriptomics to analyze 51 CRC brain metastases. A subset had matched primary colon tumors and longitudinally paired metastatic resections before and after radiation treatment. We identified the critical spatial cellular features of the tumor epithelium and the surrounding tumor microenvironment that support metastatic growth in the brain. CRC brain metastases developed a stromal microenvironment with abundant fibroblasts and tumor-associated macrophages. A fibroblast–macrophage cellular neighborhood promoted angiogenesis, extracellular matrix remodeling, and immune suppression. Tumor cells showed local adaptations. In endothelial-rich regions, they were proliferative whereas in macrophage-rich regions, they were more differentiated and immune evasive. Compared with paired primary tumors, CRC brain metastases showed increased chromosomal instability, with activation of RNA-processing, stress response, and junctional remodeling pathways. After radiation treatment, resistant clones had increased epithelial–mesenchymal transition, while the immunosuppressive stroma remained intact. We identified tumor-derived MIF , GDF15 , PRSS3 and SEMA3C ligands and macrophage-derived SPP1 that have the potential to affect multiple cell types in the metastatic niche. These ligand-receptor interactions drive angiogenesis, stromal activation and immune suppression. In a macrophage–tumor–fibroblast co-culture model, knockout of SPP1 in macrophages led to reduced expression of lipid-metabolism related genes and disrupted tumor-promoting interactions. Together, these results indicate that CRC growth in the brain is sustained by a specific cellular organization with immunosuppressive multicellular interactions.

Article activity feed