MyeliMAP: Studying Oligodendrocyte Function in Brain Networks
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Oligodendrocytes are the myelinating glia of the central nervous system (CNS), essential for rapid signal propagation, metabolic support, and neuronal health. While rodent-based cultures and organoid systems have provided insights into oligodendrocyte biology, they fall short of capturing human-specific features of myelination or integrating structural and functional readouts. Here, we present MyeliMAP ( Myeli nation MAP ping), a human pluripotent stem cell (hPSC) -derived microphysiological and electrophysiological platform that enables robust modeling of CNS myelination. The system combines inducible hPSC-derived neurons and oligodendrocytes in a custom-engineered microfluidic microstructure designed to mimic the developing brain microenvironment, promoting spatially organized axon-glia interactions and controlled myelin sheath formation. Within six weeks, we demonstrate myelin formation and maturation by immunofluorescence and ultrastructural validation using transmission electron microscopy (TEM), confirming compact multilayered wrapping of human axons. Importantly, the microstructure is directly integrated with a high-density microelectrode array (HD-MEA), enabling real-time, long-term functional assessment of network activity and myelin-dependent changes in signal conduction. This allowed us to demonstrate that oligodendrocyte-based myelinated neurons display enhanced conduction velocity of action potentials compared to neuron monocultures. Moreover, the presence of oligodendrocytes stabilized the temporal neuronal network activity by reducing variability in firing patterns and enhancing synchrony across the culture. This dual structure-function approach surpasses static end-point analyses by coupling morphological validation with dynamic, quantitative measurements of maturing circuit physiology. MyeliMAP provides a reproducible, human-relevant platform to dissect neuron-glia interactions and accelerate discovery of remyelination-promoting strategies for CNS disease.