High-efficiency targeted integration of extrachromosomal arrays in C. elegans using PhiC31 integrase
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Extrachromosomal arrays are unique chromosome-like structures created from DNA injected into the C. elegans germline. Arrays are easy to create and allow for high expression of multiple transgenes. They are, however, unstable unless integrated into a chromosome. Current methods for integration, such as X-rays and CRISPR, damage DNA and are low-efficiency. Here, we demonstrate that the viral integrase PhiC31, which mediates a non-mutagenic recombination between short attB and attP sequences, can be used for extremely efficient and targeted integration of arrays.
In this method, a transgene, a selectable marker, and attP sites are injected into the gonad of a strain that (1) has an attB site in its genome, and (2) expresses PhiC31 in its germline. F1 extrachromosomal arrays are cloned, grown for multiple generations with selection, and then screened for homozygous array integrations. The procedure is simple, requires less time than screening for extrachromosomal arrays, and arrays can be screened for transgene function after stable integration. Arrays that transmit are integrated by PhiC31 with 50-95% efficiency, allowing for the isolation of many unique integrants from a single injection. Arrays can also be integrated at fluorescent landing pads and arbitrary sites in the genome. Using nanopore sequencing, we show that three new integrated arrays are between 1.6 and 18 megabases in length, assemble with large repeats, and can contain hundreds of copies of injected transgenes. We have built a collection of strains and plasmids to enable array integration at multiple sites in the genome using various selections. PhiC1-mediated Integration of Arrays of Transgenes (PhiAT) will allow C. elegans researchers to shift from using unstable extrachromosomal arrays to directly integrating arrays.