Microcompartments in Hodarchaeales: a bioenergetic engine that could have fuelled eukaryogenesis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Eukaryotic intracellular compartmentalization is a key innovation in the evolution of complex cellular life. While microcompartments enable metabolic specialization in many bacteria, to our knowledge, no analogous systems have been identified in Archaea. Here, we report the discovery of archaeal microcompartments (AMCs) in Hodarchaeales, an order within the phylum Promethearchaeati (Asgard archaea) that includes the closest known archaeal relatives of eukaryotes. Phylogenetic and structural analyses indicate that these catabolic AMCs, which are specialized for sugar-phosphate metabolism, were acquired by horizontal gene transfer from deep-rooted bacteria of the phylum Myxococcota. The shell pentamers of AMCs are fused to lysine/arginine-rich intrinsically disordered regions that capture cytosolic DNA, facilitating nutrient scavenging. Reaction-diffusion modelling predicted that enzyme colocalization and substrate channelling within AMCs, can drive an approximately 100-fold increase in NADH flux. Thus, the AMCs substantially boost energy production in the cell and might have primed the archaeal host for eukaryogenesis.

Article activity feed