Integrated Cross-Organ Transcriptomic Analysis Uncovers Conserved Gene Signatures Predictive of Allograft Rejection

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Long-term transplant success is limited by allograft rejection, a complex process traditionally studied on an organ-specific basis. To establish a unified framework beyond organ-specific studies, we performed a network-based systems biology analysis of transcriptomic data from 672 liver, kidney, and heart transplant biopsies to identify a conserved, pan-organ molecular framework of rejection. By constructing and comparing organ-specific gene co-expression networks, we identified a consensus, six-module immune cascade that captures the hierarchical nature of the alloimmune response. In addition, we also uncovered a highly conserved 24-gene cell cycle signature consistently upregulated in rejecting allografts, implicating cellular proliferation as a core feature of rejection pathology. From this framework, we derived a 172-gene immune signature and applied machine learning models to assess its predictive performance, achieving accuracy comparable to established benchmarks. We further refined this to a minimal, high-performance 20-gene immune signature (AUC > 0.96). Both the immune and cell cycle signatures demonstrated robust, pan-organ utility when independently validated in a lung transplant cohort (n=243). Collectively, these findings define a pan-organ molecular framework for rejection and highlight cell cycle dysregulation as a conserved hallmark, offering a foundation for standardized, cross-organ diagnostic platforms to improve allograft surveillance and patient outcomes.

Article activity feed