Long-read transcriptome analysis using IsoRanker for identifying pathogenic variants in Mendelian conditions

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Identifying pathogenic non-coding variants that contribute to Mendelian conditions remains challenging as the functional impact of these variants on gene function is often unknown. We present IsoRanker, a long-read transcriptome sequencing-based framework that prioritizes functionally relevant non-coding variants by detecting genes and novel isoforms with outlier expression, allelic imbalance, and/or nonsense-mediated decay (NMD). We generated paired cycloheximide-treated and untreated fibroblast transcriptomes from 31 individuals (3 individuals with known transcript-altering rare variants and 28 individuals with unsolved conditions) and linked transcripts to phased long-read genomes. IsoRanker successfully recovered known transcript alterations in this cohort and remained robust in subsampling analyses to cohorts of 11 individuals and ∼5 million full-length transcripts per individual. However, performance was dependent upon de novo isoform caller choice, particularly for NMD-sensitive and novel isoforms. Among 28 previously unsolved cases, IsoRanker deprioritized most fibroblast-expressed candidate splice site variants while nominating new leads. In one individual, IsoRanker prioritized HARS1 , revealing biallelic non-coding variants that together produced a partial HARS1 loss-of-function and informed targeted therapy in this individual using histidine supplementation. These findings establish long-read, NMD-aware transcriptomics with IsoRanker as an effective approach for generating isoform-level functional evidence, improving classification of non-coding variants and supporting the diagnosis of individuals with rare diseases.

Article activity feed