A chromatin fiber model explains cell-free DNA fragmentation signatures of active regulatory elements

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Circulating cell-free DNA (cfDNA) assays are being widely adopted in oncology and maternal-fetal medicine. Patterns of cfDNA fragmentation can provide useful information about gene regulation and expression in human disease from a blood draw. Here, we demonstrate that enhancer RNA expression – a marker of enhancer activity – can be inferred from local patterns of cfDNA fragmentation. We define a transcriptional activation score (TAS) that predicts expression of enhancers and genes based on cfDNA fragment sizes and positions near transcriptional start sites (TSSs). The TAS identifies activity of cancer-associated enhancers in patients with cancer, distinguishes clinically relevant cancer subtypes, and identifies activation of enhancers associated with treatment resistance and therapy response. We propose a simple model to account for our findings based on chromatin fiber structure and the depletion of H1 histone proteins near active TSSs. Our model provides a unified framework that reconciles seemingly conflicting observations from prior fragmentomics studies. Broadly, this work enables blood-based assessments of gene regulation in cancer and non-oncologic diseases to inform pathobiology, diagnosis, and treatment selection.

Article activity feed