Multi-cohort, cross-species urinary proteomics reveals signatures of LRRK2 dysfunction in Parkinsons disease
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) are the predominant genetic cause of Parkinson's disease (PD) and often increase kinase activity, making LRRK2 inhibitors promising treatment options. Although LRRK2 kinase inhibitors are advancing clinically, non-invasive readouts of LRRK2-linked pathway modulation remain limited. Profiling urinary proteomes from 1,215 individuals across three cohorts and integrating whole-genome sequencing from >500 participants to map genotype-proteome associations, we identified 177 urinary proteins associated with pathogenic LRRK2, enriched for lysosomal/glycosphingolipid, immune, and membrane-trafficking pathways. Machine learning narrowed the features to a cohort-agnostic 30-protein panel that classified G2019S carriers with a mean ROC AUC of 0.91 across independent tests. To evaluate translation, we performed multi-organ and urinary proteomics in rat gain- and loss-of-function models (BAC-LRRKG2019S and Lrrk2KO) and after Lrrk2 inhibition (MLi-2 and PF-475), revealing tissue-specific responses-strongest in kidney-and cross-species overlap, including 24 brain proteins detectable in human urine. Rat-derived perturbations predicted LRRK2 mutation status in patients (AUC 0.75) and reversed with Lrrk2 inhibition, supporting their pharmacodynamic utility. Together, our findings establish urine as a scalable, non-invasive matrix that captures systemic and brain-relevant consequences of LRRK2 dysfunction and nominate candidate pharmacodynamic markers set to support LRRK2-directed trials.