KIF5A binds RNA to orchestrate synaptic mRNA localization and stress granules in ALS

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neuronal health depends on the precise transport and local translation of mRNAs to maintain synaptic function across highly polarized cellular architecture. While kinesin motor proteins are known to mediate mRNA transport, the specificity and direct involvement of individual kinesins as RNA-binding proteins (RBPs) remain unclear. Here, we demonstrate that KIF5A, a neuron-specific kinesin implicated in amyotrophic lateral sclerosis (ALS), functions as an RBP. We show that KIF5A directly binds mRNAs encoding synaptic ribosomal proteins and is required for their synaptic localization and for maintaining normal synaptic composition and function. Additionally, we show ALS-linked KIF5A mutations confer gain-of-function properties, enhancing mRNA binding, increasing synaptic ribosomal protein accumulation, inducing neuronal hyperexcitability, and impairing stress responses. These findings reveal a previously unrecognized mechanism by which mutant KIF5A disrupts synaptic homeostasis. Our work positions a kinesin motor protein as an RBP with critical roles in mRNA transport, local translation, and stress response.

Article activity feed