Transcriptional condensates at super-enhancers mediate pH-dependent transcriptional control in innate immunity

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Tissue acidification is a common feature of hypoxia, inflammation and solid tumor. Acidic pH regulates innate immune response in macrophages by weakening BRD4-containing transcriptional condensates. Yet how disruption of transcriptional condensates leads to gene-specific regulation of immune programs remain unclear. Here, we integrated ATAC-seq, ChIP-seq, and RNA-seq of primary murine macrophages and performed integrative epigenomics analyses to identify transcriptional regulators (TRs) with pH-sensitive regulatory potential and association to BRD4-dependent transcriptional condensates. We determined pH-dependent super-enhancers (SEs) by extended profiles of BRD4 binding and h3K27ac marks. We found RELA, IRF family, and STAT family as candidate TRs enriched at BRD4-associated, pH-sensitive SE regions. RELA and IRF3 preferentially occupied BRD4-associated and pH-sensitive SEs, and displayed markedly reduced binding under acidic conditions, aligning with BRD4 occupancy change. Correspondingly, immune-response genes within BRD4-associated, pH-sensitive SE regions, including Ch25h , Acp2 , Gda , and Ifit family, were significantly higher expressed at pH 7.4 than at pH 6.5. Together, these results reveal a set of TRs involved in BRD4-associated, pH-sensitive transcriptional condensates that coordinate macrophage gene activation under physiological conditions, providing mechanistic insight into how acidic stress modulates transcriptional condensates and immune responses.

Article activity feed