Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
A major challenge in cancer treatment is the ability of tumor cells to adapt to immunotherapy through immune escape, often mediated by the PD-1/PD-L1 pathway. To investigate this, we adapted an ordinary differential equation model of combination therapy, incorporating the dynamics of the immune checkpoint inhibitor Avelumab and the immunostimulant NHS-muIL12. Using literature-derived parameter values from a previous study, we refitted a single parameter across therapies, which showed that PD-L1 expression increased with immunotherapy, while Avelumab blocked its functional signaling, preventing PD-L1 from suppressing T-cell activity. Incorporating therapy-dependent, dynamically regulated PD-L1 expression enabled a biologically grounded mechanism to reproduce experimental observations, leading us to formulate PD-L1 tumor expression as a dynamic variable ( ϵ ) and providing a mechanistic basis for both therapeutic synergy and treatment failure. Our results indicate that tumor resistance is linked to dose-dependent upregulation of PD-L1 following NHS-muIL12 treatment, explaining treatment failure, while PD-1/PD-L1 blockade in combination therapy enables effective anti-tumor immune responses.