Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

A major challenge in cancer treatment is the ability of tumor cells to adapt to immunotherapy through immune escape, often mediated by the PD-1/PD-L1 pathway. To investigate this, we adapted an ordinary differential equation model of combination therapy, incorporating the dynamics of the immune checkpoint inhibitor Avelumab and the immunostimulant NHS-muIL12. Using literature-derived parameter values from a previous study, we refitted a single parameter across therapies, which showed that PD-L1 expression increased with immunotherapy, while Avelumab blocked its functional signaling, preventing PD-L1 from suppressing T-cell activity. Incorporating therapy-dependent, dynamically regulated PD-L1 expression enabled a biologically grounded mechanism to reproduce experimental observations, leading us to formulate PD-L1 tumor expression as a dynamic variable ( ϵ ) and providing a mechanistic basis for both therapeutic synergy and treatment failure. Our results indicate that tumor resistance is linked to dose-dependent upregulation of PD-L1 following NHS-muIL12 treatment, explaining treatment failure, while PD-1/PD-L1 blockade in combination therapy enables effective anti-tumor immune responses.

Article activity feed