Human Oncogene EWS::FLI1 Functions as a Pioneer Factor in Saccharomyces cerevisiae

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ewing sarcoma (EwS) is an aggressive, human-exclusive tumor typically driven by the EWS::FLI1 fusion protein. To assess whether the neomorphic functions of EWS::FLI1 are fundamentally dependent on evolutionarily recent cofactors such as ETS transcription factors (ETS-TFs), Plycomb group (PcG) proteins, CBP/p300, or specific subunits of the BAF complex, we expressed EWS::FLI1 in the model organism Saccharomyces cerevisiae. This minimal system was chosen because several key EWS::FLI’s cofactors possess greatly reduced sequence homology (e.g., BAF) or are lacking altogether (e.g., ETS-TFs, PcG, or CBP/p300). We used co-IP/MS to map the yeast interactome, Chip-Seq to identify gDNA binding sequences, RNA-Seq for global gene expression, and engineered reporters to test conversion of (GGAA) tandem repeats (GGAAμSat) into neoenhancers. We found that the yeast EWS::FLI1 interactome was more limited and qualitatively distinct from its human counterpart, sharing core machinery (e.g. RNA Polymerase II, FACT) but lacking the BAF/SWI-SNF and spliceosome complexes, and showing strong enrichment for the SAGA chromatin remodeling complex. We also found that EWS::FLI1 binds to hundreds of sites in the yeast genome with a clear preference for putative ETS-TF consensus sequences and (CA) dinucleotide repeats. Yet, EWS::FLI1 expressing cells presented only minimal transcriptional dysregulation, a stark contrast to the extensive changes observed in humans and Drosophila cells. Finally, we found that EWS::FLI1 successfully converted silent GGAAμSat sequences into active enhancers in yeast. This remarkable result occurs despite the absence of homologs for key human activators, such as CBP/p300, strongly suggesting that EWS::FLI1 can mobilize functionally related, non-homologous pathways to establish neoenhancers at GGAAμSat sites. Altogether, our results indicate that EWS::FLI1’s core ability to drive GGAAμSat-dependent gene expression is a conserved, ancient property, while GGAAμSat-independent extensive transcriptome reprogramming is dependent on co-factors and pathways specific to animal cells.

Article activity feed