Nuclear receptor-neurotransmitter coupling links behavior to metabolic state

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Animals must flexibly respond to environmental stimuli to survive, and optimal responses critically depend on the organism’s current needs. Many organisms have evolved both cell-intrinsic and intertissue signaling pathways that integrate metabolic status. However, how this information is encoded in molecular signals is currently not well understood. Here we show that the nematode C. elegans employs lipidated neurohormones that combine the neurotransmitter octopamine and fat metabolism-derived building blocks to relay information about lipid metabolic status and drive inhibition of aversive olfactory responses during food removal. Using targeted metabolomics, we show that lipidated neurohormone synthesis requires the carboxylesterase CEST-2.1, which links octopamine-glucosides with endogenous methyl-branched or diet-derived cyclopropane fatty acids that act as agonists of the nuclear receptor and master regulator of fat metabolism, NHR-49/PPARα. Loss of cest-2.1, loss of bacterial cyclopropane fatty acid production, or loss of endogenous biosynthesis of the methyl-branched fatty acid substrates of CEST-2.1 mimics the behavioral responses of animals lacking octopamine, indicating that regulation of neurotransmitter-dependent behavior is linked to the coordination of fat metabolism via NHR-49/PPARα. Biosynthesis and subsequent neuromodulation via lipidated neurohormone relies on an intertissue trafficking pathway in which octopamine is shuttled first into the intestine where it is chemically modified, which is likely followed by neuronal import and intracellular hydrolysis to finally release free octopamine. We propose that esterase-dependent synthesis and subsequent hydrolysis of lipidated neurohormones represents a chemical encoding mechanism by which animals integrate information from neurotransmitter signaling and lipid homeostasis to direct appropriate behaviors.

Article activity feed