Discovery of a CHI3L1-Targeted Small Molecule Modulating Neuroinflammation in Alzheimer’s Disease via DNA-Encoded Library (DEL) Screening

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chitinase-3-like protein 1 (CHI3L1, also known as YKL-40) has emerged as a central effector of astrocyte-mediated neuroinflammation and a promising biomarker for Alzheimer’s disease (AD). However, small molecule CHI3L1 inhibitors that modulate neuroinflammation are limited. Here, we report the discovery of a CHI3L1-targeted small molecule, DEL-C1 , identified through DNA-encoded library (DEL) screening and validated using orthogonal biophysical, computational, and cellular approaches. DEL-C1 demonstrated direct CHI3L1 binding in microscale thermophoresis (MST) and surface plasmon resonance (SPR) assays, with reversible and concentration-dependent association. Molecular docking and 100-ns molecular dynamics simulations revealed a stable binding mode within the CHI3L1 substrate groove, anchored by Tyr206 and flanked by Trp99 and Trp352, supporting a thermodynamically favorable interaction. In vitro ADME profiling indicated a balanced physicochemical profile, permeability, and metabolic stability, consistent with CNS drug-like properties. Functionally, DEL-C1 reversed CHI3L1-induced astrocyte dysfunction by restoring Aβ uptake, lysosomal acidification, and proteolytic activity, while reducing CHI3L1 and IL-6 secretion. DEL-C1 also suppressed CHI3L1-driven NF-κB transcriptional activation, highlighting its anti-inflammatory potential. Collectively, this study establishes DEL-C1 as a promising small molecule modulator of CHI3L1 and a chemical tool to interrogate astrocyte-driven neuroinflammation in AD.

Article activity feed