Cell cycle oscillations in a polarity network facilitate state switching by morphogenetic cues
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The proper establishment of cell form, fate, and function during morphogenesis requires precise coordination between cell polarity and developmental cues. To achieve this, cells must establish polarity domains that are stable yet sensitive to guiding cues. Here we show that C. elegans germline blastomeres resolve this trade-off by creating a time-varying polarization landscape. Specifically, coupling the PAR polarity network to the cell-cycle kinase CDK-1 ensures that newborn cells operate in a low-feedback regime that lowers barriers to polarity state switching, allowing spatial cues to induce and orient PAR protein asymmetries. As CDK-1 activity rises at mitotic entry, increasing molecular feedback reinforces cue-induced asymmetries to yield robust and stable patterning of PAR domains. Consistent with this model, optogenetic and chemical perturbations show that low-CDK/low-feedback regimes destabilize PAR domains but are required for both de novo polarization and the reorientation of polarity in response to inductive cues. We propose that mitotic oscillations in cell polarity circuits dynamically optimize the polarization landscape to enable coordination of polarity with morphogenesis. Such temporal control of developmental networks is likely a general mechanism to balance robustness of cellular states with sensitivity to signal-induced state switching.