Optogenetic control of PLC-γ1 activity polarizes cell motility

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Phospholipase C-γ1 (PLC-γ1) signaling is required for mesenchymal chemotaxis, but is it sufficient to bias motility? PLC-γ1 enzyme activity is basally autoinhibited, and light-controlled membrane recruitment of wild-type (WT) PLC-γ1 (OptoPLC-γ1) in Plcg1- null fibroblasts does not trigger lipid hydrolysis, complicating efforts to isolate its contribution. Utilizing cancer-associated mutations to investigate the regulatory logic of PLC-γ1, we demonstrate that the canonical hallmark of enzyme activity, phosphorylated Tyr783 (pTyr783), is not a proxy for activity level, but is rather a marker of dysregulated autoinhibition. Accordingly, OptoPLC-γ1 with a deregulating mutation (P867R, S345F, or D1165H) exhibits elevated phosphorylation, and membrane localization of such is sufficient to activate substrate hydrolysis and concomitant motility responses. In particular, local recruitment of OptoPLC-γ1 S345F polarizes cell motility on demand. This response is spatially dose-sensitive and only partially reduced by blocking canonical PLC-γ1 signaling yet is lipase-dependent. Our findings reframe the interpretation of PLC-γ1 regulation and demonstrate that local activation of PLC-γ1 is sufficient to direct cell motility.

Article activity feed