Castl: Robust Identification of Spatially Variable Genes in Spatial Transcriptomics via an Ensemble-based Framework

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Spatially variable genes (SVGs) are essential for elucidating tissue organization within spatially resolved transcriptomics. While a number of computational methods have been developed for SVG identification, their reliance on algorithm-specific assumptions, such as predefined kernel functions or spatial neighborhood graphs, often results in substantial variability in sensitivity and inflated false discovery rates (FDRs) across heterogeneous datasets. To address this challenge, we here develop Castl, an ensemble-based framework for SVG identification that integrates multiple detection methods through statistically designed aggregation modules. Comprehensive evaluations on both simulated and real-world data demonstrate that Castl consistently identifies biologically meaningful spatial expression patterns, mitigates method-specific biases and effectively controls FDRs across various biological contexts, resolutions, and spatial technologies. This flexible, assumption-free framework offers a robust and standardized foundation for spatially informed feature discovery in complex biological systems.

Article activity feed