The functional landscape of the human ubiquitinome

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Protein ubiquitination regulates cell biology through diverse avenues, from quality control-linked protein degradation to signaling functions such as modulating protein-protein interactions and enzyme activation. Mass spectrometry-based proteomics has allowed proteome-scale quantification of hundreds of thousands of ubiquitination sites (ubi-sites), however the functional importance and regulatory roles of most ubi-sites remain undefined. Here, we assembled a human reference ubiquitinome of 108,341 ubi-sites by harmonizing public proteomics data. We identified a core subset of ubi-sites under evolutionary constraint through alignment of ubiquitin proteomics data from six non-human species, and determined ultra-conserved ubi-sites recurring at regulatory hotspots within protein domains. Perturbation proteomics revealed that these highly conserved ubi-sites are more likely to regulate signaling functions rather than proteasomal degradation. To further prioritize functional ubi-sites with roles in cellular signaling, we constructed a functional score for more than 100,000 ubi-sites by integrating evolutionary, proteomic, and structural features using machine learning. Our score identifies ubi-sites regulating diverse protein functions and rationalizes mechanisms of genetic disease. Finally, we employed chemical genomics to validate the functional relevance of high-scoring ubi-sites and leveraged genetic code expansion to demonstrate that ubiquitination of K320 in the RNA-regulator ELAVL1 disrupts RNA binding. Our work reveals systems-level principles of the ubiquitinome and provides a powerful resource for studying protein ubiquitination.

Article activity feed