Structural basis for ATP-driven double-ring assembly of the human mitochondrial Hsp60 chaperonin
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The ATP-driven mHsp60:mHsp10 chaperonin system assists protein folding within the mitochondrial matrix of human cells. Substrate protein folding has been proposed to occur through interconnected single- and double-ring pathways. In the absence of nucleotide, mHsp60 exists in equilibrium between free protomers and heptameric single rings, while the formation of double rings requires ATP. Here, we present cryo-electron microscopy structures of mHsp60 in the apo state, bound to ATP, and bound to ATP in complex with the cochaperonin mHsp10. ATP binding to single-ring apo mHsp60 7 triggers coordinated conformational changes in the intermediate and apical domains, resulting in a highly dynamic apical region within the ring. Extensive inter-subunit rearrangements flatten the equatorial surface of each ring, thereby enabling inter-ring contacts that stitch the rings together to form double-ring mHsp60 14 . Collectively, these structures define the structural basis of ATP-driven double-ring assembly of a human mitochondrial chaperonin responsible for maintaining mitochondrial protein homeostasis.